EXERCISES [MAI 3.12-3.13]

EQUATIONS OF LINES

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1.

Passing through	Parallel to	Equation of line
$A(3,5)$	$\vec{b}=\binom{1}{7}$	$\vec{r}=\binom{3}{5}+\lambda\binom{1}{7}$
the origin	$\vec{b}=\binom{2}{3}$	$\vec{r}=\binom{0}{0}+\lambda\binom{2}{3}$
$A(3,5)$	x-axis	$\vec{r}=\binom{3}{5}+\lambda\binom{1}{0}$
$A(3,5)$	y-axis	$\vec{r}=\binom{3}{5}+\lambda\binom{0}{1}$
A(1,3,5)	$\vec{b}=\left(\begin{array}{l}1 \\ 7 \\ 2\end{array}\right)$	$\vec{r}=\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 7 \\ 2\end{array}\right)$
the origin	$\vec{b}=\left(\begin{array}{l}1 \\ 4 \\ 3\end{array}\right)$	$\vec{r}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 4 \\ 3\end{array}\right)$
A(1,3,5)	x-axis	$\vec{r}=\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
A(1,3,5)	y-axis	$\vec{r}=\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
A(1,3,5)	z-axis	$\vec{r}=\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

2.

Passing through	Equation of line
$A(3,5)$ and $B(4,12)$	$\vec{r}=\binom{3}{5}+\lambda\binom{1}{7}$
$A(1,-4)$ and $B(7,6)$	$\vec{r}=\binom{1}{-4}+\lambda\binom{6}{10}$
the origin and $B(7,6)$	$\vec{r}=\binom{0}{0}+\lambda\binom{7}{6}$

Passing through	Equation of line
$A(1,3,5)$ and $B(2,10,7)$	$\vec{r}=\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 7 \\ 2\end{array}\right)$
$A(1,3,5)$ and $B(0,5,3)$	$\vec{r}=\left(\begin{array}{l}1 \\ 3 \\ 5\end{array}\right)+\lambda\left(\begin{array}{l}-1 \\ 2 \\ -2\end{array}\right)$
the origin and $B(2,10,7)$	$\vec{r}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 10 \\ 7\end{array}\right)$

3. (i) $r=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
(ii) $\boldsymbol{r}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$
(iii) $r=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)+\lambda\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
4. (a) yes (b) no (c) no
5. Required vector will be parallel to $\binom{3}{-1}-\binom{-1}{4}=\binom{4}{-5}$

Hence required equation is $r=\binom{-1}{4}+t\binom{4}{-5} \quad\left(\mathrm{OR} r=\binom{3}{-1}+s\binom{4}{-5}\right.$).
6. (a) $\overrightarrow{\mathrm{PQ}}=\binom{5}{-3}$
(b) Using $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b} \quad\binom{x}{y}=\binom{1}{6}+t\binom{5}{-3}$
7. (a) Vector equation of a line $\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{t}, \boldsymbol{a}=\binom{0}{0}, \boldsymbol{t}=\binom{2}{3} \Rightarrow \boldsymbol{r}=\lambda\binom{2}{3}$
(b) $y=\frac{3}{2} x$
8. Direction vector $=\binom{6}{5}-\binom{1}{3}=\binom{5}{2}$
$\binom{x}{y}=\binom{1}{3}+t\binom{5}{2} \mathbf{O R}\binom{x}{y}=\binom{6}{5}+t\binom{5}{2}$
9. $x=1-2 t \quad y=2+3 t$
$\frac{x-1}{-2}=\frac{y-2}{3} \Leftrightarrow 3 x+2 y=7$
10. Perpendicular vector: either $\binom{3}{-2}$ or $\binom{-3}{2}$
$\vec{r}=\binom{4}{-1}+\lambda\binom{3}{-2} \Rightarrow\left\{\begin{array}{c}x=4+3 \lambda \\ y=-1-2 \lambda\end{array} \Rightarrow \frac{x-4}{3}=\frac{y+1}{-2}\right.$
$2(x-4)+3(y+1)=0 \Rightarrow 2 x-8+3 y+3=0 \Rightarrow 2 x+3 y=5$
OR
Gradient of a line parallel to the vector $\binom{2}{3}$ is $\frac{3}{2}$
Gradient of a line perpendicular to this line is $-\frac{2}{3}$
So the equation is $y+1=-\frac{2}{3}(x-4) \Rightarrow 3 y+3=-2 x+8 \Rightarrow 2 x+3 y=5$
11. (a)

(b) Using $\boldsymbol{r}=\boldsymbol{a}+t \boldsymbol{b}:\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)+t\left(\begin{array}{c}-2 \\ 3 \\ 2\end{array}\right)$ or $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 5 \\ 3\end{array}\right)+t\left(\begin{array}{c}-2 \\ 3 \\ 2\end{array}\right)$
12. B, i.e $r=\binom{4}{4}+t\binom{6}{2}$ and $\quad \mathrm{D}$, i.e $r=\binom{7}{5}+t\binom{3}{1}$
13. (a) $A B=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) B C=\left(\begin{array}{l}3 \\ 3 \\ 3\end{array}\right)$, Hence $B C=3 A B$. Since $B C / / A B$ and they have a common point A, B, C are collinear. (Notice: You can also consider $A C=4 A B$)
(b) $r=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)+\lambda\left(\begin{array}{l}3 \\ 4 \\ 5\end{array}\right)$
(c) $\quad \cos B A D=\frac{A B \cdot A D}{|A B| \cdot|A D|}=\frac{12}{\sqrt{150}}$
14. Angle between lines $=$ angle between direction vectors $\binom{4}{3}$ and $\binom{1}{-1}$.
$\cos \theta=\frac{1}{5 \sqrt{2}}=0.1414 \Rightarrow \theta=81.9^{\circ}(3 \mathrm{sf}),(1.43$ radians $)$
15. Direction vectors are $\boldsymbol{a}=\boldsymbol{i}-3 \boldsymbol{j}$ and $\boldsymbol{b}=\boldsymbol{i}-\boldsymbol{j}$.
$\cos \theta=\frac{\boldsymbol{a} \cdot \boldsymbol{b}}{|\boldsymbol{a} \| \boldsymbol{b}|}\left(=\frac{4}{\sqrt{10} \sqrt{2}}\right)=\frac{4}{\sqrt{20}}$
16.

The direction vectors of L_{1} and L_{2} are

$$
\begin{aligned}
& L_{1}=\left(\begin{array}{c}
2 \\
3 \\
-1
\end{array}\right), L_{2}=\left(\begin{array}{c}
-1 \\
4 \\
2
\end{array}\right) \\
& L_{1} \cdot L_{2}=8 \\
& \left|L_{1}\right|=\sqrt{14},\left|L_{2}\right|=\sqrt{21} \\
& \cos \theta=\frac{8}{\sqrt{14} \sqrt{21}} \\
& \theta=1.09 \text { radians }\left(62.2^{\circ}\right)
\end{aligned}
$$

17. METHOD 1

At point of intersection:
$5+3 \lambda=-2+4 t$
$1-2 \lambda=2+t$
Solve the linear system: $\lambda=-1($ or $t=1)$
$\overrightarrow{\mathrm{OP}}=\binom{2}{3}$
METHOD 2 (changing to Cartesian coordinates)
$2 x+3 y=13, x-4 y=-10$
Solve the system
$\overrightarrow{\mathrm{OP}}=\binom{2}{3}$
18.
(a) $\quad l_{1} \quad r=\left(\begin{array}{c}4+\lambda \\ 3+5 \lambda \\ -2 \lambda\end{array}\right)$
for l_{1} for $x=2, \quad \lambda=-2$
$\Rightarrow y=-7$
$\Rightarrow z=4$
Therefore point fits on line.
(b) $\begin{array}{ll}4+\lambda=2 & \mathrm{Eq}(1) \\ 3+5 \lambda=-1+2 \mu & \mathrm{Eq}(2) \\ -2 \lambda=3-3 \mu & \mathrm{Eq}(3)\end{array}$

From Eq(1), $\lambda=-2$
From Eq(2), $3-10=-1+2 \mu$
$-7=-1+2 \mu$
$\mu=-3$
Substituting in $\mathrm{Eq}(3)$
$\Rightarrow 4=3+9$
\Rightarrow lines do not intersect
19. (a) the dot product of the direction vectors is 0 . (b) $(5,19)$.
(c) $7 x-y=16$ and $x+7 y=138$
(d) $x=5, y=19$
20. (a) the first two equations give $\lambda=2, \mu=1$ which satisfy the $3^{\text {rd }}$ equation.
(b) $(4,9,7)$
(c) $\cos \theta=\frac{8}{\sqrt{21} \sqrt{13}} \Rightarrow \theta=61^{\circ}$
21. $\mathrm{r}_{1}=r_{2}$
$2+s=3-t$,
$5+2 s=-3+3 t$,
$3+3 s=8-4 t$
solve the equations, finding one correct parameter ($s=-1, t=2$)
the coordinates of T are $(1,3,0)$
22. Solve $1+\lambda=1+2 \mu, 1+2 \lambda=4+\mu, 1+3 \lambda=5+2 \mu$

Solving, $\quad \lambda=2$, (or $\mu=1$).
P has position vector $3 \boldsymbol{i}+5 \boldsymbol{j}+7 \boldsymbol{k}$ or $\left(\begin{array}{l}3 \\ 5 \\ 7\end{array}\right)$
23. Line (AB) is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}1 \\ 4 \\ -1\end{array}\right)+\lambda\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$ Line (CD) is $\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}5 \\ 6 \\ 3\end{array}\right)+\mu\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$
at point of intersection of two lines
$1+\lambda=5+3 \mu$
$4+\lambda=6+2 \mu$
$-1-\lambda=3+\mu$
solving simultaneously any two of these three equations gives
$\lambda=-2$ and $\mu=-2$ (only one value required). \Rightarrow point of intersection $(-1,2,1)$
Note: Since question states that lines intersect, no need to check the $3^{\text {rd }}$ equation
24. The direction of the line is $\boldsymbol{v}=\left(\begin{array}{c}2 \\ -2 \\ 1\end{array}\right)$ and $|\boldsymbol{v}|=3$.

Therefore, the position vector of any point on the line 6 units from A is

$$
\boldsymbol{a} \pm 2 \boldsymbol{v}=\left(\begin{array}{c}
3 \\
0 \\
-2
\end{array}\right) \pm 2\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)=\left(\begin{array}{c}
7 \\
-4 \\
0
\end{array}\right) \text { or }\left(\begin{array}{c}
-1 \\
4 \\
-4
\end{array}\right) . \text { giving the point }(7,-4,0) \text { or }(-1,4,-4)
$$

OR
Any point on the line has the form $\mathrm{P}(3+2 \lambda,-2 \lambda,-2+\lambda)$.
The distance between A and B must be 6 .
This will give two values for $\lambda: \lambda= \pm 2$.
Thus the point is $(7,-4,0)$ or $(-1,4,-4)$.
25. (a) $\overrightarrow{\mathrm{AB}}=\binom{1}{-3}, \overrightarrow{\mathrm{OR}}=\binom{x}{3-3 x}$
(b) $\quad \overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{OR}}=x-3(3-3 x)=0 \quad(10 x-9=0)$

R is $\left(\frac{9}{10}, \frac{3}{10}\right)$
26. (a) $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}5 \\ -10 \\ 25\end{array}\right)$. Direction vector of line is $\left(\begin{array}{c}1 \\ -2 \\ 5\end{array}\right)$ (OR any multiple)

Therefore the equation of l in parametric form is
$x=\lambda+1$,
$y=-2 \lambda+3$,
$z=5 \lambda-17$
(or $x=\lambda+6, y=-2 \lambda-7, z=5 \lambda+8$, or any equivalent parametric form)
(b) P on $l=>\mathrm{P}$ can be written as $(p+1,-2 p+3,5 p-17)$.
$\overrightarrow{\mathrm{OP}} \perp l=>\left(\begin{array}{c}p+1 \\ -2 p+3 \\ 5 p-17\end{array}\right) \cdot\left(\begin{array}{c}1 \\ -2 \\ 5\end{array}\right)=0$
$p+1+4 p-6+25 p-85=0 \Rightarrow 30 p=90 \Rightarrow p=3$
Therefore P is $(4,-3,-2)$
27. (a) Only $B(8,3,9)$ lies on the line
(b) $\quad d(A, P)=6 \Rightarrow \lambda=1$ or 5 The points are $(4,1,5)$ and $(12,5,13)$
(c) $d(O, P)=\sqrt{89} \Rightarrow \lambda=2, \lambda=-\frac{38}{9}$ The points are $(6,2,7)$ and $\left(-\frac{58}{9},-\frac{38}{9},-\frac{49}{9}\right)$
(d) $d(C, P)=\sqrt{54} \Rightarrow \lambda=2, \lambda=-\frac{26}{9}$ The points are $(6,2,7)$ and $\left(-\frac{34}{9},-\frac{26}{9},-\frac{25}{9}\right)$
28. (a) For the foot $\mathrm{P}, D P \perp$ line $\Rightarrow\left(\begin{array}{c}2+2 \lambda \\ \lambda-1 \\ 3+2 \lambda\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right)=0 \Rightarrow \lambda=-1$. The point is $(0,-1,1)$
(b) For $\mathrm{P}(0,-1,1)$ (from (e), $d(D, P)=\sqrt{5}$
(c) For $\mathrm{D}(0,1,0), \mathrm{P}(0,-1,1)$ it is $\mathrm{D}^{\prime}(0,-3,2)$ (since P is the midpoint of DD^{\prime})

29. EITHER

The position vector for the point nearest to the origin is perpendicular to the direction of the line. At that point:
$\left(\begin{array}{c}1-\lambda \\ 2-3 \lambda \\ 2\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ -3 \\ 0\end{array}\right)=0 \Rightarrow 10 \lambda-7=0 \Rightarrow \lambda=\frac{7}{10}$
OR
Let s be the distance from the origin to a point on the line, then

$$
\begin{aligned}
& s^{2}=(1-\lambda)^{2}+(2-3 \lambda)^{2}+4=10 \lambda^{2}-14 \lambda+9 \\
& \frac{\mathrm{~d}\left(s^{2}\right)}{\mathrm{d} \lambda}=20 \lambda-14 \quad \text { For minimum } \frac{\mathrm{d}\left(s^{2}\right)}{\mathrm{d} \lambda}=0, \Rightarrow \lambda=\frac{7}{10} \\
& \text { THEN } x=\frac{3}{10}, y=-\frac{1}{10} \text { The point is }\left(\frac{3}{10}, \frac{-1}{10}, 2\right) .
\end{aligned}
$$

30. (a)

$\overrightarrow{A B} \cdot \vec{v}=0 \Rightarrow\left(\begin{array}{c}t+5 \\ 2 t+7 \\ 2 t+4\end{array}\right) \cdot\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)=0 \Rightarrow t+5+4 t+14+4 t+8=0 \Rightarrow t=-3$
We obtain $B(2,3,0)$
(b) Then $\overrightarrow{A B}=\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)$, and the required distance is $|A B|=3$.
(c) $\quad B(2,3,0)$ is the midpoint of $A A^{\prime}$. Since we know $A(0,2,2)$, we obtain $A^{\prime}(4,4,-2)$
31. (a) Using direction vectors $\boldsymbol{u}=\left(\begin{array}{c}-2 \\ 6 \\ 10\end{array}\right)$ and $\boldsymbol{v}=\left(\begin{array}{c}-6 \\ 10 \\ -2\end{array}\right)$
$\cos \theta=\frac{52}{\sqrt{140} \sqrt{140}}=\frac{52}{140}$
(b) (i) For substituting $s=1$, position vector of P is $\left(\begin{array}{c}7 \\ 10 \\ 4\end{array}\right)$
(ii) $\left(\begin{array}{c}7 \\ 10 \\ 4\end{array}\right)=\left(\begin{array}{c}1 \\ 20 \\ 2\end{array}\right)+t\left(\begin{array}{c}-6 \\ 10 \\ -2\end{array}\right)$
$7=1-6 t \Rightarrow t=-1$
verify for $2^{\text {nd }}$ coordinate, $10=20+(-1)(10)$ and $3^{\text {rd }}$ coordinate, $4=2+(-1)(-2)$ Thus, P is also on L_{2}.
(c) $k\left(\begin{array}{c}-2 \\ 6 \\ 10\end{array}\right)=\left(\begin{array}{c}6 \\ x \\ -30\end{array}\right)$
$-2 k=6 \Rightarrow k=-3$
$x=-3 \times 6=-18$

B. Paper 2 questions (LONG)

32. (a) (i)

$$
\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=\left(\begin{array}{r}
17 \\
2 \\
5
\end{array}\right)-\left(\begin{array}{r}
7 \\
-3 \\
-5
\end{array}\right)=\left(\begin{array}{r}
10 \\
5 \\
10
\end{array}\right)
$$

(ii) $\overrightarrow{\mathrm{AB}}=\sqrt{10^{2}+5^{2}+10^{2}}=15$
(b) (i) $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AE}}=0((-6)(-2)+6(-4)+3(4))$

$$
\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AD}}=0((10)(-6)+5(6)+10(3))
$$

$$
\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AE}}=0((10)(-2)+5(-4)+10(4))
$$

(ii) $90^{\circ}\left(\right.$ or $\left.\frac{\pi}{2}\right)$
(c) Volume $=|\overrightarrow{\mathrm{AB}}| \times|\overrightarrow{\mathrm{AD}}| \times|\overrightarrow{\mathrm{AE}}|=15 \times 9 \times 6=810$ (cubic units)
(d) Setting up a valid equation involving H . There are many possibilities.
$e g\left(\begin{array}{r}x-9 \\ y-4 \\ z-12\end{array}\right)=\left(\begin{array}{r}-10 \\ -5 \\ -10\end{array}\right)$
coordinates of H are $(-1,-1,2)$
(e) $\overrightarrow{\mathrm{HB}}=\left(\begin{array}{r}18 \\ 3 \\ 3\end{array}\right)$
$\cos \hat{P}=\frac{\overrightarrow{\mathrm{AG}} \cdot \overrightarrow{\mathrm{HB}}}{|\overrightarrow{\mathrm{AG}}||\overrightarrow{\mathrm{HB}}|}=\frac{2 \times 18+7 \times 3+17 \times 3}{\sqrt{2^{2}+7^{2}+17^{2}} \sqrt{18^{2}+3^{2}+3^{2}}}\left(=\frac{108}{\sqrt{342} \sqrt{342}}\right)=0.31578 \ldots$
$\hat{P}=71.6^{\circ} \quad(=1.25$ radians $)$
33. (a)
(i) (JQ) $r=\left(\begin{array}{l}6 \\ 0 \\ 0\end{array}\right)+t\left(\begin{array}{c}-6 \\ 7 \\ 10\end{array}\right) \quad\left(\right.$ or $r=\left(\begin{array}{c}0 \\ 7 \\ 10\end{array}\right)+t\left(\begin{array}{c}-6 \\ 7 \\ 10\end{array}\right)$)
(ii) (MK) $\boldsymbol{r}=\left(\begin{array}{l}0 \\ 7 \\ 0\end{array}\right)+s\left(\begin{array}{c}6 \\ -7 \\ 10\end{array}\right)$.
(b) $\cos \theta=\frac{15}{\sqrt{185} \sqrt{185}}\left(=\frac{15}{185}=0.0811\right) \Rightarrow \theta=1.49$ (radians), 85.3°
(c) METHOD 1 Geometric approach

Valid reasoning eg diagonals bisect each other, $\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OM}}+\frac{1}{2} \overrightarrow{\mathrm{MK}}$
Calculation of mid point eg $\left(\frac{6+0}{2}, \frac{0+7}{2}, \frac{0+10}{2}\right)$
$\overrightarrow{\mathrm{OD}}=\left(\begin{array}{c}3 \\ 3.5 \\ 5\end{array}\right) \quad(\operatorname{accept}(3,3.5,5))$

METHOD 2
$\left(\begin{array}{l}6 \\ 0 \\ 0\end{array}\right)+\boldsymbol{t}\left(\begin{array}{c}-6 \\ 7 \\ 10\end{array}\right)=\left(\begin{array}{l}0 \\ 7 \\ 0\end{array}\right)+\boldsymbol{s}\left(\begin{array}{c}6 \\ -7 \\ 10\end{array}\right)$
$6-6 t=6 s$,
$7 t=7-7 s$,
$10 t=10 s$
$\Rightarrow s=0.5 \quad t=0.5$
$\overrightarrow{\mathrm{OD}}=\left(\begin{array}{c}3 \\ 3.5 \\ 5\end{array}\right) \quad(\operatorname{accept}(3,3.5,5))$
METHOD 3
$\left(\begin{array}{c}0 \\ 7 \\ 10\end{array}\right)+t\left(\begin{array}{c}-6 \\ 7 \\ 10\end{array}\right)=\left(\begin{array}{l}0 \\ 7 \\ 0\end{array}\right)+s\left(\begin{array}{c}6 \\ -7 \\ 10\end{array}\right)$
$-6 t=6 s$,
$7+7 t=7-7 s$,
$10+10 t=10 s$
$\Rightarrow s=0.5 \quad t=-0.5$
$\overrightarrow{\mathrm{OD}}=\left(\begin{array}{c}3 \\ 3.5 \\ 5\end{array}\right) \quad(\operatorname{accept}(3,3.5,5))$
34. (a) (i) $\quad \overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OB}}=-6 \boldsymbol{i}-2 \boldsymbol{j}=\binom{-6}{-2} \quad$ (ii) $\overrightarrow{\mathrm{OD}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{BC}}=-2 \boldsymbol{i}+0 \boldsymbol{j}(=-2 \boldsymbol{i})=\binom{-2}{0}$
(b) $\quad \overrightarrow{\mathrm{BD}}=\overrightarrow{\mathrm{OD}}-\overrightarrow{\mathrm{OB}}=-3 \boldsymbol{i}+3 \boldsymbol{j}=\binom{-3}{3} \quad$ and $\quad \overrightarrow{\mathrm{AC}}=\overrightarrow{\mathrm{OC}}-\overrightarrow{\mathrm{OA}}=-9 \boldsymbol{i}-7 \boldsymbol{j}=\binom{-9}{-7}$

Let θ be the angle between $\overrightarrow{\mathrm{BD}}$ and $\overrightarrow{\mathrm{AC}}$
therefore, $\cos \theta=\frac{6}{\sqrt{2340}} \Rightarrow \theta=82.9^{\circ}(1.45 \mathrm{rad})$
(c) $\quad \boldsymbol{r}=\boldsymbol{i}-3 \boldsymbol{j}+\boldsymbol{t}(2 \boldsymbol{i}+7 \boldsymbol{j}) \quad$ OR $\quad \boldsymbol{r}=\binom{1}{-3}+s\binom{2}{7}$
(d) EITHER
$4 \boldsymbol{i}+2 \boldsymbol{j}+s(\boldsymbol{i}+4 \boldsymbol{j})=\boldsymbol{i}-3 \boldsymbol{j}+t(2 \boldsymbol{i}+7 \boldsymbol{j})$
$\left.\begin{array}{rl}4+s & =1+2 t \\ 2+4 s & =-3+7 t\end{array}\right\} \Rightarrow t=7$ and/or $s=11$
Position vector of P is $15 \boldsymbol{i}+46 \boldsymbol{j}=\binom{15}{46}$

OR

$7 x-2 y=13$ or equivalent
$4 x-y=14$ or equivalent
$x=15, y=46$
Position vector of P is $15 \boldsymbol{i}+46 \boldsymbol{j}=\binom{15}{46}$
35. (a) (i) $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}-4 \\ 6 \\ -1\end{array}\right)$
(ii) $\cos \theta=\frac{(-1)(-4)+(2)(6)+(-3)(-1)}{\sqrt{(-1)^{2}+2^{2}+(-3)^{2}} \sqrt{(-4)^{2}+6^{2}+(-1)^{2}}}, \frac{19}{\sqrt{14} \sqrt{53}}, 0.69751 \ldots$

$$
\text { BÂO } \left.=0.799 \text { radians (accept } 45.8^{\circ}\right)
$$

(b) two correct answers: e.g. $(1,-2,3),(-3,4,2),(-7,10,1),(-11,16,0)$
(c) \quad (i) $\quad \boldsymbol{r}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)+t\left(\begin{array}{c}-3 \\ 4 \\ 2\end{array}\right)$
(ii) \quad C on L_{2}, so $\left(\begin{array}{c}k \\ -k \\ 5\end{array}\right)=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)+t\left(\begin{array}{c}-3 \\ 4 \\ 2\end{array}\right)$
$1-3 t=k$,
$-2+4 t=-k$,
$5=3+2 t$
$\Rightarrow t=1, k=-2$
coordinates of C are $(-2,2,5)$
(d) $\quad\left(\begin{array}{c}-2 \\ 2 \\ 5\end{array}\right)=\left(\begin{array}{c}3 \\ -8 \\ 0\end{array}\right)+p\left(\begin{array}{c}1 \\ -2 \\ -1\end{array}\right)$
$3+p=-2 \mathbf{O R}-8-2 p=2 \mathbf{O R}-p=5$
$p=-5$
36.

(a) $\quad \overrightarrow{\mathrm{ST}}=\boldsymbol{t}-\boldsymbol{s}=\binom{7}{7}-\binom{-2}{-2}=\binom{9}{9}$
$\overrightarrow{\mathrm{VU}}=\overrightarrow{\mathrm{ST}}$
$\boldsymbol{u}-\boldsymbol{v}=\binom{9}{9} \Rightarrow \boldsymbol{v}=\boldsymbol{u}-\binom{9}{9}=\binom{5}{15}-\binom{9}{9}=\binom{-4}{6}$
$\mathrm{V}(-4,6)$
(b) Equation of (UV) : direction is $=\binom{9}{9}\left(\right.$ or $\left.k\binom{1}{1}\right)$
$\boldsymbol{r}=\binom{5}{15}+\lambda\binom{9}{9}$ or $\binom{5}{15}+\lambda\binom{1}{1}$ or $\boldsymbol{r}=\binom{-4}{6}+\lambda\binom{9}{9}$ or $\binom{-4}{6}+\lambda\binom{1}{1}$
(c) $\binom{1}{11}$ is on the line because it gives the same value of λ, for both the x and y coordinates.

For example, $1=5+9 \lambda \quad \lambda=-\frac{4}{9}$

$$
11=15+9 \lambda \quad \lambda=-\frac{4}{9}
$$

(d) (i)

$$
\begin{aligned}
& \overrightarrow{\mathrm{EW}}=\binom{a}{17}-\binom{1}{11}=\binom{a-1}{6} \\
& |\overrightarrow{\mathrm{EW}}|=2 \sqrt{13} \Rightarrow \sqrt{(a-1)^{2}+36}=2 \sqrt{13}\left(\text { or }(a-1)^{2}+36=52\right) \\
& \\
& (a-1)^{2}=16 \\
& \\
& \begin{array}{l}
a-1=4 \text { or } a-1=-4 \\
\\
a
\end{array}=5 \text { or } a=-3
\end{aligned}
$$

(ii) For $a=-3$
$\overrightarrow{\mathrm{EW}}=\binom{-4}{6} \quad \overrightarrow{\mathrm{ET}}=\boldsymbol{t}-\boldsymbol{e}=\binom{6}{-4}$
$\cos \mathrm{WET}=\frac{\overrightarrow{\mathrm{EW}} \cdot \overrightarrow{\mathrm{ET}}}{|\overrightarrow{\mathrm{EW}}||\overrightarrow{\mathrm{ET}}|}=\frac{-24-24}{\sqrt{52} \sqrt{52}}=-\frac{12}{13}$
Therefore, WETT $=157^{\circ}(3 \mathrm{sf})$
37. (a) (i) $\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}}=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}=\left(\begin{array}{c}1 \\ -2 \\ 3\end{array}\right)$
(ii) $\boldsymbol{r}=\overrightarrow{\mathrm{OP}}+s \overrightarrow{\mathrm{PQ}}=-5 \boldsymbol{i}+11 \boldsymbol{j}-8 \boldsymbol{k}+s(\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k})$

$$
=(-5+s) \boldsymbol{i}+(11-2 s) \boldsymbol{j}+(-8+3 s) \boldsymbol{k}
$$

(b) If $\left(2, y_{1}, z_{1}\right)$ lies on L_{1} then $-5+s=2 \Rightarrow s=7$
$y_{1}=-3, z_{1}=13$
(c) $-5 \boldsymbol{i}+11 \boldsymbol{j}-8 \boldsymbol{k}+s(\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k})=2 \boldsymbol{i}+9 \boldsymbol{j}+13 \boldsymbol{k}+t(\boldsymbol{i}+2 \boldsymbol{j}+3 \boldsymbol{k})$
$-5+s=2+t$,
$11-2 s=9+2 t$,
$-8+3 s=13+3 t$
($s=4, t=-3$)
$\overrightarrow{\mathrm{OT}}=-\boldsymbol{i}+3 \boldsymbol{j}+4 \boldsymbol{k}$
(d) Direction vector for L_{1} is $\boldsymbol{d}_{1}=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}$

Direction vector for L_{2} is $\boldsymbol{d}_{2}=\boldsymbol{i}-2 \boldsymbol{j}+3 \boldsymbol{k}$
$d_{1} \cdot d_{2}=6,\left|\mathrm{~d}_{1}\right|=\sqrt{14},\left|\mathrm{~d}_{2}\right|=\sqrt{14}$,
$\cos \theta=\frac{6}{\sqrt{14} \sqrt{14}}\left(=\frac{6}{14}=\frac{3}{7}\right) \Rightarrow \theta=64.6^{\circ}(=1.13$ radians $)$
38. (a) (i)
$\overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{OB}}-\overrightarrow{\mathrm{OA}}=(4 \boldsymbol{i}-5 \boldsymbol{j}+21 \boldsymbol{k})-(2 \boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k})=2 \boldsymbol{i}-8 \boldsymbol{j}+20 \boldsymbol{k}$
(ii) $|\overrightarrow{\mathrm{AB}}|=\sqrt{2^{2}+(-8)^{2}+20^{2}}(=\sqrt{468}=6 \sqrt{13}=2 \sqrt{117}=21.6)$ $\boldsymbol{u}=\frac{1}{\sqrt{468}}(2 \boldsymbol{i}-8 \boldsymbol{j}+20 \boldsymbol{k}) \quad\left(=\frac{2}{\sqrt{468}} \boldsymbol{i}-\frac{8}{\sqrt{468}} \boldsymbol{j}+\frac{20}{\sqrt{468}} \boldsymbol{k}\right)$
(iii) If the scalar product is zero, the vectors are perpendicular.

Finding an appropriate scalar product $(\boldsymbol{u} \bullet \overrightarrow{\mathrm{OA}}$ or $\overrightarrow{\mathrm{AB}} \bullet \overrightarrow{\mathrm{OA}})$
eg $\boldsymbol{u} \cdot \overrightarrow{\mathrm{OA}}=\left(\frac{2}{\sqrt{468}}\right) \times 2+\left(\frac{-8}{\sqrt{468}}\right) \times 3+\left(\frac{20}{\sqrt{468}}\right) \times 1\left(=\frac{4-24+20}{\sqrt{468}}\right)=0$
or $\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{OA}}=2 \times 2+(-8) \times 3+20 \times 1=0$
(b) (i) EITHER
$\mathrm{S}\left(\frac{2+4}{2}, \frac{3-5}{2}, \frac{1+21}{2}\right) \quad$ Therefore, $\overrightarrow{\mathrm{OS}}=3 \boldsymbol{i}-\boldsymbol{j}+11 \boldsymbol{k}(\operatorname{accept}(3,-1,11))$
OR
$\overrightarrow{\mathrm{OS}}=\overrightarrow{\mathrm{OA}}+\frac{1}{2} \overrightarrow{\mathrm{AB}}=(2 \boldsymbol{i}+3 \boldsymbol{j}+\boldsymbol{k})+\frac{1}{2}(2 \boldsymbol{i}+8 \boldsymbol{j}+20 \boldsymbol{k})=3 \boldsymbol{i}-\boldsymbol{j}+11 \boldsymbol{k}$
(ii) $L_{1}: r=(3 \boldsymbol{i}-\boldsymbol{j}+11 \boldsymbol{k})+t(2 \boldsymbol{i}+3 \boldsymbol{j}+1 \boldsymbol{k}) \quad$ OR $\boldsymbol{r}=\left(\begin{array}{c}3 \\ -1 \\ 11\end{array}\right)+s\left(\begin{array}{l}2 \\ 3 \\ 1\end{array}\right)$.
(c) Using direction vectors (eg $2 \boldsymbol{i}+3 \boldsymbol{j}+1 \boldsymbol{k}$ and $-2 \boldsymbol{i}+5 \boldsymbol{j}-3 \boldsymbol{k}$)

Direction vectors are not scalar multiples of each other.
(d) $3+2 t=5-2 s$,
$-1+3 t=10+5 s \quad \Rightarrow(s=-1, t=2)$
$11+t=10-3 s$
P has position vector $7 \boldsymbol{i}+5 \boldsymbol{j}+13 \boldsymbol{k}$
39. (a) 27.3
(b) 48.2
(c) $\mathrm{P}(5,6,7)$
(d) The foot is $\mathrm{P}(29 / 9,22 / 9,31 / 9)$ so the reflection of $\mathrm{A}^{\prime} \mathrm{A}^{\prime}(49 / 9,8 / 9,35 / 9)$
(e) it is the line passing through $\mathrm{P}(5,6,7)$ and $\mathrm{A}^{\prime}(49 / 9,8 / 9,35 / 9)$

$$
r=\left(\begin{array}{l}
5 \\
6 \\
7
\end{array}\right)+\lambda\left(\begin{array}{c}
4 / 9 \\
-46 / 9 \\
-28 / 9
\end{array}\right) \text { which can be simplified to } r=\left(\begin{array}{l}
5 \\
6 \\
7
\end{array}\right)+\lambda\left(\begin{array}{c}
2 \\
-23 \\
-14
\end{array}\right)
$$

(i) $\left|\boldsymbol{d}_{1}\right|=3,\left|\boldsymbol{d}_{2}\right|=3$, (ii) $\quad \boldsymbol{d}_{1}+\boldsymbol{d}_{2}=\left(\begin{array}{l}3 \\ 3 \\ 4\end{array}\right), \boldsymbol{d}_{1}-\boldsymbol{d}_{2}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)$
(iii) They pass through $\mathrm{P}(5,6,7)$. Since the direction vectors have the same magnitude, for the bisector lines we can consider the direction vectors $\boldsymbol{d}_{\boldsymbol{1}} \pm \boldsymbol{d}_{2}$

$$
\boldsymbol{r}=\left(\begin{array}{l}
5 \\
6 \\
7
\end{array}\right)+\lambda\left(\begin{array}{l}
3 \\
3 \\
4
\end{array}\right) \text { and } \boldsymbol{r}=\left(\begin{array}{l}
5 \\
6 \\
7
\end{array}\right)+\lambda\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

(otherwise we would add and subtract the unit vectors $\widehat{\boldsymbol{d}}_{1}$ and $\widehat{\boldsymbol{d}}_{2}$)
40. (a) Given the points $\mathrm{A}(-1,2,3), \mathrm{B}(-1,3,5)$ and $\mathrm{C}(0,-1,1)$,
then $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right), \overrightarrow{\mathrm{AC}}=\left(\begin{array}{c}1 \\ -3 \\ -2\end{array}\right)$ and $|\overrightarrow{\mathrm{AB}}|=\sqrt{5},|\overrightarrow{\mathrm{AC}}|=\sqrt{14}$
$\cos \theta=\left(\frac{\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AB}}| \overrightarrow{\mathrm{AC}} \mid}\right)=: \frac{-7}{\sqrt{5} \sqrt{14}} \Rightarrow \theta=147^{\circ}$ (3 s.f.) or 2.56 rad
(b) Area $=\frac{1}{2}|\overrightarrow{\mathrm{AB}}||\overrightarrow{\mathrm{AC}}| \sin \theta$ or $\frac{1}{2}|\overrightarrow{\mathrm{AB}} \times \overrightarrow{\mathrm{AC}}|=2.29$ units $^{2} \quad\left(=\frac{\sqrt{21}}{2}\right)$
(c) (i) The parametric equations of l_{1} and l_{2} are

$$
\begin{array}{lll}
l_{1}: x=2, & y=-1+\lambda, & z=2 \lambda \\
l_{2}: x=-1+\mu, & y=1-3 \mu, & z=1-2 \mu
\end{array}
$$

(ii) To test for a point of intersection we use the system of equations:

$$
\begin{aligned}
2 & =-1+\mu \\
-1+\lambda & =1-3 \mu \\
2 \lambda & =1-2 \mu
\end{aligned}
$$

Then $\mu=3, \lambda=-7$ from (1) and (2)
Substituting into (3) gives RHS $=-14$, LHS $=-5$
Therefore the system of equations has no solution and the lines do not intersect.
(d) Consider random points $P(2,-1+\lambda, 2 \lambda)$ on l_{1} and $Q(-1+\mu, 1-3 \mu, 1-2 \mu)$ on l_{2}.

Then $P Q=\left(\begin{array}{c}-3+\mu \\ 2-3 \mu-\lambda \\ 1-2 \mu-2 \lambda\end{array}\right)$.
$P Q$ is perpendicular to both lines: so $P Q \cdot\left(\begin{array}{l}0 \\ 1 \\ 2\end{array}\right)=0$ and $P Q \cdot\left(\begin{array}{c}1 \\ -3 \\ -2\end{array}\right)=0$
That is

$$
\begin{aligned}
& (2-3 \mu-\lambda)+2(1-2 \mu-2 \lambda)=0 \Rightarrow 5 \lambda+7 \mu=4 \\
& (-3+\mu)-3(2-3 \mu-\lambda)-2(1-2 \mu-2 \lambda)=0 \Rightarrow 7 \lambda+14 \mu=11
\end{aligned}
$$

This gives $\lambda=-1, \mu=9 / 7 . P Q=\left(\begin{array}{c}-12 / 7 \\ -6 / 7 \\ 3 / 7\end{array}\right) \cdot|P Q|=\frac{\sqrt{189}}{7}=1.96$
41.

$$
\begin{aligned}
& \text { (a) } \overrightarrow{\mathrm{AB}}=\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k} \quad|\overrightarrow{\mathrm{AB}}|=\sqrt{3} \text { and }|\overrightarrow{\mathrm{OA}}|=3 \sqrt{2}, \quad \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{AB}}=6 \\
& \cos \theta=\frac{\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{AB}}}{|\overrightarrow{\mathrm{OA}}||\overrightarrow{\mathrm{AB}}|}=\frac{2}{\sqrt{6}}\left(=\frac{\sqrt{6}}{3}\right)
\end{aligned}
$$

(b) $\quad L_{1}: \boldsymbol{r}=\overrightarrow{\mathrm{OA}}+s \overrightarrow{\mathrm{AB}}=\boldsymbol{i}-\boldsymbol{j}+4 \boldsymbol{k}+\mathrm{s}(\boldsymbol{i}-\boldsymbol{j}+\boldsymbol{k})$ or equivalent
(c) $1+s=2+2 t$,
$-1-s=4+t$,
$4+s=7+3 t$
Finding either $s=-3$ or $t=-2$
Explicitly showing that these values satisfy the third equation
Point of intersection is $(-2,2,1)$

